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EVALUATION

This report describes further results of an approach to texture
discrimination based on spatial gray-level co-occurrences and maxirmum
1ikelihood classification. Previous results demonstrated the capability
of the log-likelihood texture discriminator to distinguish between
random texture areas where other existing schemes could not. This
procedure had the requirement that the model parameters for each of the
texture classes be known a priori and were < bstituted into the discrim-
ination process. A method has been developed Tor estimating the unknown
parameters of the texture models through the incorporation of selecting
representative training sets. This effort has created a technique

that indicates an effective method for performing texture discrimination
on real-world imagery. This work has provided a promising contribution
to accomplishing the goals of technical planning objective R2B2A,

Digital Image Exploitation.
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described by Earslick ané his co-workers [2). The methcd was shown e Te

an approximation to the statlsticelly optimux mexirum likellinccd classifier,
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texture Iiseriminant was rnroviied. The officacy of the aprroach wacs

~nern demonstrated thrcugh exgerizental resulis cttaized wizth simgeted

Alzhough The resulTs rresented in (1, were rreomising, the values of
tie zClel parameters Icr eacn cf 1ze Texiure CL2SSes XIowWn TO Te 2lTing wer .
assumed xANown & Tricri anc were sutsiituted insc the log-likelinced discrir-
inator Qirectly. In practiczl eprlicetions invelving resl-werli texTuore

- - = < R, - - = - -~ 3 - - -~ S . -
data, 27U 1s cieer ThaeT The J;olgl Daerameters for each texture CLa&ss XKncown
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In walz paper 2 method Will Te tresenzed Tor estimating the mxnown
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After descriting the cverall discrimination systexz ia Sec<ion II,
a thorough descripticn of the maximum likelihocd parameter est.mator
is givern in Secticn III. Jesults cof the new parameter estimation tecrh-
nique are given in Section IV, while the efficacy of the log-likelihood
&iscriminetor which makes use of the parameter estimates ic given in
Section V. 3Section VI provides & summery and ccaclusion.

IZ. Log-Likelirocé Dis¢riminator:

The tliock diazgram which desceribes the log-iikelikhcod texture &is-
crimination system is presenzted in Fig. 1. ALl input image cata which is t¢c e
orocessed oy either the texture discriminator or parameter estimation
stage is first passed through & pre-processing stzge. The pre-process-

Iing svage serves Two purpcses Trovides & legree oI nermesice-

Ticrnn which eliminates undesirzb e effects such as Sifferences In Z1lluz-

ination, éifferences in digizizaticn, e=c. Secondély, it serves toc re-

zuans
nex- secticn that betz the discriminatcer and parzmeter estimater reguire

xnowledge of the scheme used in gquanticzizg the datza. This irnformaticen
mey net Tte availatle irn rezl-werld arrlications. Zver I the guentizizg

scneme wers inown, 1T may be necessary ¢ re-guantize the Z2ata in crder
¢ maxs 1t suizatle for frccessing Ty the disarizmingter or rarameter esti-

matcr An 2xamzle Is the numper ¢ gray levels. As seen In 1., tle

8
b

3ize 2% the spatial gray-level co-occurrence matrix is Qxg, where

the nuzter of gray levels. Therefore, comrutational complexity cf betz <he

o

discrizminater and estimatcr Is proper=icnal teo &, the square cf the number
¥ grav level:z. TFor computaticnal reasons, It is clear that § shculd te
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properties, it is reasonable to assume that a

or first-order properties zlone could be used
likelihood discriminator.

ince a decision has been mede tc perform

simple discriminator based

instead of the proposec icg-

Zlstegran eguallzation L Liac

input data, the choice ¢f = Gaussian cutput histogram is easily explainec.

The stochastic texture models described in [1],which will be used as ihe

underlying stochastic mocels for the various texture classes, &il possess ~.::

y \~! - : - . I3
P crder Gaussian statistics. Thus, forcing the texture data tc possess a
’ T
Y Gaussian histogram will at least iasure that There is not a first-crier Ti:i-
S ; 5 .. - C s . . o .
) tch between tne texture data and the model which is to be fitted by tne
3 " .
: : parameter estimslor.
* The abcve rrée-Irocessing Iliche s CEXT2inlY NoT The ONL, Che masla
“
¢ could be usec. II the input data is properly cuantized, then there may
L
¥

involving synthetic textures, nc¢

< es A

N tinary scaling of the input data

) stage, it is dividesd izt
] training se:,
c2as33 Is kucwn.
. individually at “he texture data

it the assumed underlying

2less as dsscritesd in (1. The

ANCWL s€T)

those izages wnich

-

areremren v - gy s

Sl i ot ! s s

te nc neec to perfcrz azy rrocessinug at all.

After the original date is processed by the Gaussian egualization
two groups.

which consists of izmages containing cnly one texture whese

stochastic image model tc each class.

W

are ¥Xnown to contain

In fact, for the experimerts
ore-rrocessing was done other than simple

from 256 to 6L gray levels.

The first group consists of the

Passec TO the parametler estimator which locks

for each known class and attempts tc

The

unkncewn strucitural parzmetiers are estimated for each class and used by

tae discriminater to form the log-likelihood functicuals for sach texture

ecend group of data consist ¢f the un-

several textures




whose classes are unknown. This group of images is passed to the dis-
criminator and processed as described in rij.

As can be seen, the discrimination system described here differs
from that in [1] in that a training set must be available which contains
known texture data from each of the possible classes, and a parameter
estimator uses the training set to estimate unknown structural rarameters
for each texture class which were assumed known in the preliminzary experi-
ments conducted in [1]. Also, for real-world data, the pre-processing
described above is used to normalize the data.

III. Parameter Estimetion Technigue:

In this section a description cf the technigues useé tc develoD aprrox-
imate meximumr likelihood estimates of the unknown structural parzmeters
is presented., It will be seen that development of the proposed estimeter
parallels almost exactly the development of the discriminztor described
in [1].

Recall from [1] that {f. W is the input image and H,, x=C.,.,
i,J i,j=1 k
?

...,K-1 represent the K possible texture classes or hypotheses.

Also, recall zhat F,

. , represents the observations contained in & windcw
EREXY)

of size (2M+1)x(2M+1) centered atout pixel

g

csitien (1,5, Thet is,

F. .= {f I-M<k<i+M, J=M<2<i+M} 1,§=1,2,...,% , L

where N is the total number of pixels along each side of the assumed sguars

image array. rrom the data contained in this window the gray-level co-cceour

g

matrix was calculated for a fixed distance d for all rotatiocn axngles z:ad was
called P, . (d). The log-likelihood classifier assigned the pixel (i,]!
Loy

+o +he class 3(i,5)=kc if

wn

e ——

L3
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L { Pi’j(d)} =  max . L, {Pi,J(d)} (2)

X 0<k <K~

where

p{P, .(d)|H }
L (P, ()} & pn —Fad K

1.3 pO{Pi,j(d)} k=0,1,...,K-1 , (3)

represents the class-conditional log-likelihood functional.

Now, instead of maximizing over the possible texture classes, it is
proposed that the appropriate log—likelihod functionals be meximized over
the range of unknown model values to determine approximete maximum
likelihood estimates of unknown structural parameters. More precisely,

v

let {f. .} now represent image data from the training set which is knowm

l’\j i,.j=l

to contain homogeneous texture data from only one class Hk' Assume that

a2 suitable stochastic image model has been chosen and let & represnet

the vector containing the model parameters which are unknown and have to
be estimeted from the gray-level co-occurrence matrix calculated from the
deta. Since the entire image is known to contain only one texture, the
co-occurrence matrix can be calculated over the entire image and denoted
P(d). Also, let A represent the set of possible values which the unknown
Darameter vector & may attain. The log-likelihood functional conditioned
on Hk and parameter vector z is then

p{P(a)[H,
n B, (P(4))

3
, &)

(4)

L, P{&);a}

The approximate maximum likelihood estimate of the unknown parameter vector
is the value which meximizes the log-likelihood functional of (4). That

is, the meximum-~likelihood estimator EML satisfies

L Pa)ie, ) = mex L (P(e)g} . (5)

On

aad

i
3




By comparing Egs. (4) and (5) with Zgs. (1), (2), and (3), it can
be seen that the proposed parameter estimation scheme follows the same
logic and uses many of the elements of the previously proposed discrim-
ination scheme. It is now necessary to specify a practical way of solv-
ing equation (5). The most common method is to take first derivatives

anéd set the resulting equation to zere. That is, solve

However, for the stochastic models which are of interest no closeé form
sclution to (6) has yet been found. Therefore, it has been necessary tc
resort tc a more direct but somewhat computational solution ¢ eguation
(5). This involves performing a compuier search over the permissitle
perameter space A and taking the value é%ﬂ, wnich maximizes (5).

Since for a continuous parameter space, The range ¢f possible values is
uncountable, it is necessary to lay & discrete grid of points over the
perameter space and evaluate the log-likelihood functional only at those
ocints. Clearly, there is a tradeoff inveclved in specifying this grid.

-

I the gri

[
'

cints are szaced toc far epert, the calculated meximur zay
ve fax» from the true meximum, resuliing in pcor varameier estimates. n
the other hand, spacing the grid points too clecse together will resul:
in an unnecessary computaticnal burden.

It should be noted that more scphisticated search technicues than
the one described above could be used to reduce the computational burden,

tut were not used due to their increased frogramming complexity.
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At this po.int it is necessary to specify the urderlying stochastic

model to be used in the experiments described in the following experiments.
The model chosen is the rectangular partition process described in [1].

From {1], it can be seen that

Q=1 Q-1
L (P(a);a) -9 ] p(mm;d) 2 (m,n3d,8) | (1)
m—O n=0
where
ik(m,n;dtg) = fn Qm’n(d;Hkai) . (8)

Recall that Qm n(d;Hk,g) is the probability of observing gray-levels

Ll
m and n at a particular pair of points separated by a distance & condition-
ed on texture class , and parameter vector a. Also, recall from [1]

that

E /T
Qm n(d;Hk,g) = J nﬁﬁ a+d {f fﬁ,a daL} (9)

where ER, 2=0,1,...,8-1 represent {he quantization levels and &L
the spatial sampling interval.
For the rectangular partition process, the second-order p.d.f.

-
. % »f532,&L}in (9} can be evaluated' from corresponding results in [1].

e
N ]
£ L

et i L

@
PEpfppana = L om 5.5 e Ul (20)
where
o) £3e2ote £oerd
£ -
M e, = exp ¢ -~ 5 220
2mo2/1op2% 202(1-p2%)
) £2 (11)
= —=— exp (- — $&(f1-£,) ;3 £=0
Y2mo 202 i
- For nctaticnal convenience we have suppressed the conditicning on H
PR e (1

0) alzhough =his ccnditioning is clearly implicis.

~
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It can be seen that the rectangular process is ¢

2f <the parameters p, A, and ¢4, representing the

2€ge density, and variance cf tThe randcr field,

e
| N

Tre-processing stage, the variance c“

uZ¥rown parameter vectior z
(]

:ie 27=(p,X). Thus the search must be perfcrmed

general case, ¢ azéd

Zz treaetice, & priori knowledge of the texzures
12 lizit the seerch aree to & much mere managead
ZV. Zzremeter Tstimation Resulis ;

In order toc establish the efficacy
= Technique, 2 two-dimensicnal search was f
Zenerzted realizations of the rectangulzr
The realizazi

the parzmeters ¢ ané x. o)

Tig. :. ©Dach ¢f the images Dossesses 25¢ tixels
eex ané variance of 32 andé 18€.25, respectiively

Si gray levels. The grid whieh was used “o gene

-0.1 tc 0.§& and a2 range ¢?

ct

and

consists of the parameters A ané ¢.

of the propcsed tarameter

he spacizng betweez >

fu]lcosslae 2:0,1’_._(12)

ompletely defined in terms
correlation coefficient,
respectively. Iue tc
be kncwn, anéd <hus <the

~3av

|-

over a *wo dimeznsicna
A must obey -li<g<l and -,
of interest car Dpe used
le region.

esti-
irst applieé to simthet-
esti-

Trocess tc develcst

ne used are shown in

TC & si1le, has &
, 8N4 1s guantiiel T

rate the

A from C.1 to

values




was 0.025. The grid region was chosen to encompass the actual parameter

values for all the realizations so that the maximum values would be ex-

pected to fall within the search regions and not on a boundary. A compar-

ison of the actual and estimated parameter values for each realization

for various distances is presented in Table 1. It can be seen that the ?
parameter estimates are guite good in all cases. Due to the grid spac-

- ings, it is difficult to determine which values of A& provides the best

~_. result. The gquestion of which value of 4 is best in general application of
-
5 the rerameter estimatoer and discriminator will be presented in Section VI.

ﬁ It is of some interest to see how the value of the log-likelihood {
functional ¢f (7) varies over the search grié. Three-dimensionel plots
-f' cf the resulting likelihooé surfaces for the cases ccnsidered are illussrated

; .

: in Fig.'s L-12. The labeled zxes represent the values of o and X over which %he

search was perfcrmed while the remaining axis represents the value of

the log-likelihooéd funectionel for the corresponding values cf p end A. :
It can be seen that the surfaces are generzlly quite smooth with ne
sherr peaks at the maxirmum,
After demonstrating tiet the estimator werks for the synthetic image, it now
ig ¢f interest to aprly the rarameter estimator tc real-world imagery
as a first step in & totel texture discrimizezion aprroach. The test
imeges used consisi of selected samples of Brodatz textures [+4). Typical
: }

These images consist of 256x256 pixels and have been processed by the Gauss-

samples of grass, raffia, anéd herringbone zre illusirated in Fig. 1

L)

ian equalization stage described in Section II to possess 6L gray-levels, a !

mean of 32, and a veriance of 156.25. The parameter estimetion scheme was

actueally aprlied to three such samples of texture to give the parameter

A~
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estimates presented in Table 2. Tor each of the estimates, the search

region was chosen empirically so that the maximunm occurred in the inter-

ior of the region. For the case d=1 all of the A estimates are greater

than unity, and as 4 gets larger, the estimated values of » decrease.

The high values of estimated edge density and the fact that these esti-

mates vary greatly for different values of d is somewhat discomforting.

If the assumed rectangular rartition process providéed an accurate model

for the Brodatz textures, values of A less thar unity which remain relatively
censtant for different values of & would be expected. That this does nct
occur can be explained by comparing the propersties of the rectangular
partition process to the properties of real-worlé textures. Realiza-

tions of the rectangular rartitior process are coxmposed of regicns of constant
gray level while most real-worli zextures are ccxpesed of regions of

o

nearly constant gray level. As mentioned in [1], the atove properties

of the rectangular process reswits in a large discrete probebility mass

along the main diagonal of the grzyv-level co-cccurrence metrix while fcor real-
world textures this probability mess will be distributed over the diagon-
als close to the main diagonal. The high values of estimated edge Jensity
which result and the fact that they decrease as & gets larger are direc:

result c¢f this mismatch betweer tze model ané aczual datsa. >Enhancemen:s

to the rectangular process mcdel, such as the addition of 2 white ncise

field, might eliminate this problem=. In the meantime, however. scme ccnsciatiorn
can be taken from the fact that the estimated perameter values fcr <he

three textures are significantly different, which leaés to the hcpe that

even though the modeling assumptions are somewhat inaccurate, cvera.l dizcrinm-
ingter performznce shewld still Te good. This izsue will te fizouszel in

~re rex. sec=ion.

A




V. Discriminator Results:

Making use of the parameter estimates described in the previous sec-
tion, several discrimination experiments were performed. The 2-D digital
filtering implementation approach described in [1] was used as was the

Wiener filtering approach to filter design. The specifications and

. S

resulting parameters for the designed filters are provided in Table 3.

Jote the coefficient A described in [1] is not included since it is an

- overall gain factor, and was taken equal to unity, which will not affect ;
,"‘\i the results. Comparison of the desired and actual freguency responses for
A the designed filters is provided in Fig.'s 1lk-16.

The first experiment performed involveé processing the same synthet-
¥ ic test image as used in {[1]. Recall this test imege is composed of three
”? distinct realizations of the rectangular process possessing different
* parameters, a5 shown in Fig.'s 17-19.
Since the parameter estimates are guite close to the actual values,
ané the filters used are the same as those used in [1], it is not surprising
: : that the results, shown in Figs. 17-19, are similar to those in [1]. The case d&=1
| appears to provide the best results, particularly for the weak and moder-
ate filtering cases. This result ternds tc disagree with the statement
in [1] that a distance equal tc the reciprocal of the average edge density
of the textures being processed is the cptizum distance for texture dis-~
criminati-n. More will be said about about this question later.
To test the discriminator on real-world data, the original test image ‘
in Fig.20a was created which contains samples of the three Brodatz texture

used in Section ITZI. The upper-left or NW side of the image contains raffia

P YRR

-

4 texture data, the right or I side of the image conteins grass, and the N

Lo o
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bottom or S portion of the image corsists of herringbone.

The results of the discriminator using the parameter estimates of
Table 2 and the filters specified in Table 3 are presented in Fig.'s
20-22. As was the case for the synthetic -est izage, a distance of
d=1 produced the best results. For this distance, the strong filter
provides excellent results ccmparable to <he simthetic test case, whlle
the resulzs fcr the weax zand mocderste Ti.ters are c_early infericr. This
tends to indicete that for the real-world test case, more smoocthing is
reguired by the filter tc remcve Znccrrectly discriminateld areess ceused
by irreguiar areas in each *exture.

VI. Surmmary and Conclusion

2 specli.c swo-

A metnocd for estimating the stiructursl tarzmeters cf
chastic texture mcdéel nas Deen prorosed for use with the texture discrim-

LN

ination scheme described in L,. This taremeter esiimatiocn scheme nas

Teen soown tc provide good results when useé ¢ realizations cf the rec-
tangular partition process for various chcices of mcdel parameters. When
cplied to selected samples of the Brodatz (=) textures, the parameter
estimation scheme gives values wnich indicate <“hat the rectangulzr par:i-
ivicn process is not an idezal mcdel For real-werld textures. Icowever.

resulits of using the texture discriminatcr cn saxrles ccentaining Ircdat:

Textures are cuite good, indicating that the rroposed texture discrimin-
ation technique can be effective on real-wecrld texture. Several extensicns
to the procedure are suggested which might improve performance.

For example, results incicate that the rectangular partitior process

ot

is not an ideal model for real.werld itextures Lecause it possesses regicns

3
|




of constant gray level while real world textures usually possess regions

of nearly constant gray level. A logical step would be to consider add-

ing a white noise component to the rectangular partition process, and
redevelop the expressions for second-order p.d.f.'s which are
used in the discriminator and parameter estimator. 1
Ancther possible solution to this modeling mismatch might be to in-
clude in the pre-processing stage a step which isolates regions of neerly
. constant gray level and 2lters the intensity of each pixel within each
- region ¢ a suitable constant gray level. Hopefully, this step would

: allow the processed images tc retein their textural properties while

- ' sroviding for a closer match between texture andé model, resulting :in ?
L
* ixproved discrizinaticn results.
.
_ ‘ Cne modification tc the texture discrimination syster which is propesed
1 N

is the elimination cf <he Wiener filtering arprroach tc the 2-D digital

i ucu
> o~

filtering implementation. It seems cbvious frcm locking at the frequen- ’
Cy responses that the Wiener filters can be replaced by simple lowpass
{ filters parametized by cutcff frequency. Although this change would

nct reduce discriminator ccxputaticnal complexity, it would simplify

filter desigrn ané make i+ easier ¢ relate discriminator performance
“c the chcice cf fil-er paranmeters.

One of <he questions which must be answered is which value of dis-
tance 1 between pixels is the best to use in the proposed texture discrim-
inator and parameter estimator. Since the desired objective is to maxi-
mize discriminator performance, it seems obvious that the best distance

is the value of d which prcvides meximum separation of <he parameter {

-

[ T




estimates for each of the texture classes being considered. The reswzs

for the Brodatz test image show this to be true. Despite the fact that the

model used provides an inaccurate fit to the textures,the fact thet the
meter estimates are significantly different for all three texture class-
es for the case 4=l results in good discriminetor performance.

In any event. it is believed the:t *he prcposed texture discrizin-

a.°r 2zn te usel ¢ proviie sffective rerfeormence In oa veriesy of real-werli

texrire discrimination problems Toasrer wory 1s being dcne tc o
. sy P

crove discrimiretor rerformance snd estatlish <he officacy ¢f +khis

«porcach as applied to other megl orlz —ext re problerms.
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Log-Likelihood Surface for Jectangular Partition Process;

- A=C.257T, ¢=0.2, d=1
4
Figure :©
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Figure 13

Selected Samples of Brodatz Textures
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b.) Actual Response
for Filter 1

.

c.) Desired Response d.) Actual Response
for Filter 2 for Filter O

) Lelired Rosponne £.) Ac*ual Resyince
for Fiiller 3 for Filter 3

Figure 14

rrequency Recponces of Desired and Actual Fiiters @ a=l
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E - a.) Desired Response b.) Actual Response
for Filter L for Fiiter 4

¢.) besired Eesponse d.) Actval Response
for Filter S for Filter 5

e.) Desired Response f.) Actual Response
for Filter € for Filter 6

Figure 15

Frequency Responses of Desired and Actual Filters for d4=2
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a.) Original; NW s ;. ) Weak Interference

2=0.16; NE, p

c.) Moderate Interference d.) Strong Interference

Flgure 17

Performance of Log-Likelihood Discriminator

Using Parameter Estimates with d=1
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c.) Moderate Interiirence a.) Strong Trterrerence

Lo Figure 16

Performance of Log-Likelihood Discriminator

Using Parumeter Estimates «wi'i d=_
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a.) Origipal, NW,p=0.0 t ) Weax Interference
*=0.165 NBE,5=0.5,
A=0.723; 3, ¢=0.0,
A=0. 33
» I
¢.) Yolderate Interference d.) Sirong Interference

Figure 19

Performan~« of Log-Likelihood Discriminator

izing Paramster Estimates w0 =3
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c.) Filter 2
Moderate Intertference
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b.) Filter 1
Weak Interference

d.) Filter 3
Strong Interference

Feoformance of Log-Likelihood Diseriminator

Using Parameter Estimates with u=1




a.)

c.)

Original; NW, Raffia; b.) Filter 4
E, Grass; S, Herring- Weak Interference
bone

Filter 5 d,) Filter 6
Moderate Interference Strong Interference

Figure 21

Performance of Log-Likelihood Discriminator

Using Parameter Estimates with d=2
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Figure 22

Performance of Log-Likelihood Discriminator

Using Parameter Estimates with a=3
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